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1 Magnetic Crimping

Magnetoforming is a metal fabrication technique that has been in use for several decades.
A large capacitor bank is used to store energy that is used to bend, weld, or otherwise work
a piece of metal. In the following example, we will look at a magnetoforming apparatus.
The apparatus uses a capacitor and a spark gap to transfer a large amount of energy into a
work coil. A thin tube of Aluminum is placed in the work coil. The work coil exerts some
force on the tube, and the tube is crimped radially around a plug placed in its open end (see
diagram). Below is an electrical schematic of the apparatus, and a description of what we
are going to do to analyze this machine.

• First, we will describe the action of the crimper,

• Second, we will derive an expression for the current as a function of time in the coil,
the resonant frequency, the peak current, and the skin depth of the Aluminum tube
with the emitted EM radiation,

• Last, our task remains to derive an expression for the pressure as a funtion of time,
the peak pressure, and a simple expression for the peak pressure based on the physical
parameters of the apparatus.

1. Crimping effect

If we consider the Al tube as a sum of infinitessimal looks stacked up inside a larger
sum of current loops (the inductor), we can use Faraday’s law of induction and Lenz’s
law to explain the crimping effect.

If we create a large magnetic induction B with the solenoid over a relatively short time

period with a large ∂I
∂t

, we create a large ∂ ~B
∂t

. Faraday shows that

∇× E = −∂ ~B

∂t
(1)

So an ~E field is created whose direction is such that an emf is induced in the tube.
Assuming the tube is roughly the same size as the solenoid (all of the field goes through
the tube), the induced emf in the wall of the tube will have the folowing form:
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E = −M∂I

∂t
(2)

where the I is the changing current in the inductor, and M the mutual inductance of
the system. This emf (E) gives rise to the induced current. Note, however, that from

∇ × ~E, effectively Lenz’s Law, the induced current flows in the opposite direction of
the original current. This induced current leads to a new ~B field, opposing the original
~B field.

These two opposing inductions exert a repulsive force on each other. The force exerted
by the solenoid on the tube will be much greater than the force exerted by the tube on
the solenoid. Thus, the tube feels a force radially inward, giving rise to the crimping
effect.

2. Current, Peak current, Frequency, Skin Depth, etc.

The differential equation for this circuit has the following form:

Vo − Rbi1 −
1

C

∫ t

0

i1+2dt − L
∂i2

∂t
− Rsi2 = 0 (3)

Where Vo is the initial charging voltage of the capacitor, i1 is the current in loop 1,
and i2 is the current through loop 2. We have used Kirchoff’s law and Ohm’s law
implicitly. At the peak value, the current through Rb is only 0.5mA, and the current
through Rs is similarly derived to be several orders of magnitude higher, so we will
neglect the effect of Rb in the differential equation to maintain sanity. Now, we have

Vo − Rs −
1

C

∫ t

0

idt − L
∂i

∂t
= 0 (4)

With the caviat

L
∂2i

∂t2
+ Rs

∂i

∂t
+

i

C
= 0 (5)

The general solution is found to be

i(t) = e
−Rst

2L

2Vo

ω0L
sinh

Rst

2L

√

1 − 4L

R2
sC

(6)

But, we have 4L
R2

sC
> 1, so our general solution reduces to

i(t) = e
−Rst

2L

Vo

ωoL
sin ωot (7)

Note that this has the form we would expect- a sine function with an exponential decay.
Also notice that ωo is the resonant frequency of the system. The resonant frequency
has the following form:
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ωo =

√

1

LC
− R2

s

4L2
(8)

With the familiar relation f = ωo

2π
. Plugging in the numbers given, we find the frequency

of oscillation to be ωo =181811.8 rad
s

=28.94 kHz.

For the imax we must take the derivative of i(t) and set it to zero- giving us the time
when the current reaches a maximum. Thus, we have

∂i(t)

∂t
= 0 =

−Rs

2L
e

−Rst

2L

V0

ω0L
sin ω0t + e

−Rst

2L

V0

L
cos ω0t (9)

This gives us a time of 8.1 × 10−6 seconds, which corresponds to a maximum current
of 1.6 × 104 Amps, or 16kA.

From the damping factor of a transmitted EM wave in a dispersive medium, i.e. e−βz

with z the direction of propagation, we find that the distance the wave travels before
falling to 1

e
of its original value is given by ∆z = β−1, which is generally referred to as

the skin depth, δ.

δ =
c√

2πµωoσ
(10)

Above, c is the speed of light, µ is permiability of the material (µµ0, which in our case
is simply the permiability of free space, and σ is the conductivity of the medium, or 1

ρ
.

Plugging in the given numbers, we get δ =4.97x10−4 meters, or 0.5 mm.

3. Pressure as a function of time

The magnetic pressure can be derived in a number of ways. I will outline two, as the
answer was suprising to me (independent of the physical dimensions). First we will
look at virtual work method. I will work in MKS units:

Umagnetic ≡
∫

B2

2µ0

dτ =
B2

2µ0

(volume) =
B2

2µ0

πr2l (11)

with l, and r being the physical dimentions of the surface we want to calculate the
energy inside of. Let us call the r̂ direction the radial direction. We know that force
is defined as ~F ≡ −∇U . Therefore, we can define a magnetic force in the following
manner:

Fmagnetic ≡ −∇Umagnetic = −∂Umagnetic

∂r
r̂ = − B2

2µ0

2πrl (12)

Notice that the force is in the −r̂ direction. This means that the force is directed
radially inward. So, the force will be pushing the tube in an inward, crushing manner.
We can define a pressure
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fmagnetic ≡
|Fmagnetic|

area
=

|Fmagnetic|
2πrl

=
B2

2µ0

(13)

which is an interesting result.

Not believing it, I started from the stress tensor Tij.

Tij ≡ ε(EiEj −
1

2
E2∂ij) +

1

µ0

(BiBj −
1

2
B2∂ij) (14)

For our system i = j and we are only interested in the B field, so Tij reduces to:

Ti=j = − B2

2µ0

(15)

Force is the time derivitive of momentum of the field, and is given as

∂pi=j

∂t
=
∑

j

∫

v

∂

∂xj

Ti=jd
3x (16)

Applying the divergence theorem

∂pi=j

∂t
=
∫

s

∂

∂xj

Ti=j · n̂da (17)

This gives us

Fmagnetic =
∫

s
Ti=j · n̂da = − B2

2µ0

(area) (18)

Which is the exact same result we got earlier. The magnetic pressure is independent
of the actual size of the surface. The only place the physical dimention of the surface
the pressure is exerted on is present in the ~B field.

Getting back to our problem, the magnetic field from an ideal solenoid is given as

~Bsolenoid = µ0nI(t)ẑ (19)

where n is the number of turns per unit length, n = N
l
. Here, the field is only dependent

on the number of turns and the total length of the coil. Now we have the pressure as
a function of time:

fmagnetic =
µ0

2
n2I2(tmax) =

µ0n
2

2
e

−Rst

L

V 2
o

ω2
oL

2
(sin ωot)

2 (20)

And the peak pressure is calculated using the peak current as calculated above: fpeak =
40 MPa = 5805 psi. This is plenty of pressure. It is certainly enough to crush Coke
cans, if not more. Quarters placed in this solenoid would also probably shrink.
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In order to get a good estimate for the actual pressure, we can make a few approx-
imations. We know that the sin term of the pressure will reach maximum when the
t = tmax. So, we let that equal 1. Also, we know that the exponential term will be
very close to 1, since the tmax is so small. We are left with:

fmagnetic ≈
µ0n

2V 2
o

2ω2
oL

2
(21)

Now, since we are still making approximations we can say that ω0 ≈ (
√

LC)−1. Plug-
ging this in we have:

fmagnetic =
µ0n

2V 2
o C

2L
=

µ0C

2L

(

N

l
Vo

)2

=
C

2πl

(

V0

R

)2

(22)

for a solenoid. Notice that the radius of the coil R is in the denominator. Any error
in that measurment could yield very different pressures. Perhaps the better method of
predicting the pressure is with the inductance measured directly, perhaps the next-to-
last relation. Also, this is independent of the number of turns in the coil. To maximize
pressure, one would have to minimize the radius first, then the length.
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